2-3 Wallet: A 2-3 multisig wallet could be used to create secure offline storage with paper wallets or hardware wallets. Users should already backup their offline Bitcoin holdings in multiple locations, and multisig helps add another level of security. A user, for example, may keep a backup of a paper wallet in three separate physical locations. If any single location is compromised the user’s funds can be stolen. Multisignature wallets improve upon this by requiring instead any two of the three backups to spend funds--in the case of a 2-3 multisig wallet. The same setup can be created with any number of signatures. A 5-9 wallet would require any five of the nine signatures in order to spend funds.
How hard are the puzzles involved in mining? Well, that depends on how much effort is being put into mining across the network. The difficulty of the mining can be adjusted, and is adjusted by the protocol every 2016 blocks, or roughly every 2 weeks. The difficulty adjusts itself with the aim of keeping the rate of block discovery constant. Thus if more computational power is employed in mining, then the difficulty will adjust upwards to make mining harder.  And if computational power is taken off of the network, the opposite happens. The difficulty adjusts downward to make mining easier.
Meanwhile, investors have been rattled this week by reports bank-owned currency trading utility CLS, along with enterprise software giant IBM, are teaming up to trial the blockchain-based Ledger Connect, an application that offers services from different vendors, with some nine financial institutions, including international heavyweights Barclays and Citigroup.
In the process of mining, each Bitcoin miner is competing with all the other miners on the network to be the first one to correctly assemble the outstanding transactions into a block by solving those specialized math puzzles. In exchange for validating the transactions and solving these problems. Miners also hold the strength and security of the Bitcoin network. This is very important for security because in order to attack the network, an attacker would need to have over half of the total computational power of the network. This attack is referred to as the 51% attack. The more decentralized the miners mining Bitcoin, the more difficult and expensive it becomes to perform this attack.
Google Trends structures the chart to represent a relative search interest to the highest points in the chart. A value of 100 is the peak popularity for the term “Bitcoin” and a value of 50 means it was half as popular at that time. A score of 0 indicates that the term was less than 1% as popular as the peak. It’s amazing how the searches relating to Bitcoin have spiked in the past few years.
Keys come in pairs. The public key is used to encrypt the message whereas the private key decrypts the message. The only person with the private key is you. Everyone else is free to have your public key. As a result, everyone can send you encrypted messages without having to agree on a key beforehand. They simply use your public key and you untangle the gibberish by using your private key.
Lightweight clients consult full clients to send and receive transactions without requiring a local copy of the entire blockchain (see simplified payment verification – SPV). This makes lightweight clients much faster to set up and allows them to be used on low-power, low-bandwidth devices such as smartphones. When using a lightweight wallet, however, the user must trust the server to a certain degree, as it can report faulty values back to the user. Lightweight clients follow the longest blockchain and do not ensure it is valid, requiring trust in miners.[92]

With bitcoin, on the other hand, the supply is tightly controlled by the underlying algorithm. A small number of new bitcoins trickle out every hour, and will continue to do so at a diminishing rate until a maximum of 21 million has been reached. This makes bitcoin more attractive as an asset – in theory, if demand grows and the supply remains the same, the value will increase.

Bitcoin mining is the process through which bitcoins are released to come into circulation. Basically, it involves solving a computationally difficult puzzle to discover a new block, which is added to the blockchain, and receiving a reward in the form of few bitcoins. The block reward was 50 new bitcoins in 2009; it decreases every four years. As more and more bitcoins are created, the difficulty of the mining process – that is, the amount of computing power involved – increases. The mining difficulty began at 1.0 with Bitcoin's debut back in 2009; at the end of the year, it was only 1.18. As of April 2017, the mining difficulty is over 4.24 billion. Once, an ordinary desktop computer sufficed for the mining process; now, to combat the difficulty level, miners must use faster hardware like Application-Specific Integrated Circuits (ASIC), more advanced processing units like Graphic Processing Units (GPUs), etc.
A variant race attack (which has been called a Finney attack by reference to Hal Finney) requires the participation of a miner. Instead of sending both payment requests (to pay Bob and Alice with the same coins) to the network, Eve issues only Alice's payment request to the network, while the accomplice tries to mine a block that includes the payment to Bob instead of Alice. There is a positive probability that the rogue miner will succeed before the network, in which case the payment to Alice will be rejected. As with the plain race attack, Alice can reduce the risk of a Finney attack by waiting for the payment to be included in the blockchain.[16]

These dynamics have resulted in a race among miners to amass the fastest, most energy-efficient chips. And the demand for faster equipment has spawned a new industry devoted entirely to the computational needs of Bitcoin miners. Until late 2013, generic graphics cards and field-programmable gate arrays (FPGAs) were powerful enough to put you in the race. But that same year companies began to sell computer chips, called application-specific integrated circuits (ASICs), which are specifically designed for the task of computing the Bitcoin hashing algorithm. Today, ASICs are the standard technology found in every large-scale facility, including the mining farm in Ordos. When Bitmain first started making ASICs in 2013, the field was thick with competitors—BitFury, a multinational ASIC maker; KnCMiner in Stockholm; Butterfly Labs in the United States; Canaan Creative in Beijing; and about 20 other companies spread around China.
David Carlson: The Bitcoin Pioneer | Carlson, a former software engineer, is often credited with starting the basin’s bitcoin boom when he built one of the world’s first large-scale mines in an old furniture store in Wenatchee. “We’re where the blockchain goes from that virtual concept to something that’s real in the world, something that somebody had to build and is actually running,” he says. Here, Carlson stands in front of his latest mining endeavor, a megaproject made up of 24 prefabricated mining “pods.” | Patrick Cavan Brown for Politico Magazine
But Bolz, a longtime critic of cryptocurrency, says local concerns go beyond economics: Many residents he hears from aren’t keen to see so much public power sold to an industry whose chief product is, in their minds, of value only to speculators and criminals. “I mean, this is a conservative community, and they’re like, ‘What the hell’s wrong with dollars?’” says Bolz. “If you just went out and did a poll of Chelan County, and asked people, ‘Do you want us to be involved in the bitcoin industry, they would say not only ‘No,’ but ‘Hell no.’”
Nakamoto is estimated to have mined one million bitcoins[26] before disappearing in 2010, when he handed the network alert key and control of the code repository over to Gavin Andresen. Andresen later became lead developer at the Bitcoin Foundation.[27][28] Andresen then sought to decentralize control. This left opportunity for controversy to develop over the future development path of bitcoin.[29][28]