Bitcoin prices saw tremendous activity during 2017, rising several thousand percent over the year. The market has seen some volatility, although many of the dips seen in the cryptocurrency have thus far proven to be good buying opportunities. This trend may or may not continue, but given the outlook for Bitcoin and other cryptocurrencies, the trend could potentially remain higher for a long time to come.
Let’s say a hacker wanted to change a transaction that happened 60 minutes, or six blocks, ago—maybe to remove evidence that she had spent some bitcoins, so she could spend them again. Her first step would be to go in and change the record for that transaction. Then, because she had modified the block, she would have to solve a new proof-of-work problem—find a new nonce—and do all of that computational work, all over again. (Again, due to the unpredictable nature of hash functions, making the slightest change to the original block means starting the proof of work from scratch.) From there, she’d have to start building an alternative chain going forward, solving a new proof-of-work problem for each block until she caught up with the present.
Bitcoin's origin story sounds like something out of science fiction: It was launched in 2008 on the heels of a white paper published by the mysterious Satoshi Nakamoto, whose real identity – and country of origin – are unknown. Nakamoto conceived of Bitcoin as a currency that was 1) encrypted; 2) decentralized, i.e. it was ungoverned and did not belong to any nation; and 3) a digital "distributed ledger," such that everyone can verify online the legitimacy of transactions.

Bitcoin mining is a competitive endeavor. An "arms race" has been observed through the various hashing technologies that have been used to mine bitcoins: basic CPUs, high-end GPUs common in many gaming computers, FPGAs and ASICs all have been used, each reducing the profitability of the less-specialized technology. Bitcoin-specific ASICs are now the primary method of mining bitcoin and have surpassed GPU speed by as much as 300 fold. As bitcoins have become more difficult to mine, computer hardware manufacturing companies have seen an increase in sales of high-end ASIC products.[7]
For all the peril, others here see the bitcoin boom as a kind of necessary opportunity. They argue that the era of cheap local power was coming to an end even before bitcoin arrived. One big reason: The region’s hydropower is no longer as prized by outside markets. In California, which has historically paid handsomely for the basin’s “green” hydropower, demand has fallen especially dramatically thanks to rapid growth in the Golden State’s wind and solar sectors. Simply put, the basin may soon struggle to find another large customer so eager to take those surplus megawatts—particularly one, like blockchain mining, that might bring other economic benefits. Early data from Douglas County, for example, suggest that the sector’s economic value, especially the sales tax from nonstop server upgrades, may offset any loss in surplus power sales, according to Jim Huffman, a Douglas County port commissioner.
For years, few residents really grasped how appealing their region was to miners, who mainly did their esoteric calculations quietly tucked away in warehouses and basements. But those days are gone. Over the past two years, and especially during 2017, when the price of a single bitcoin jumped from $1,000 to more than $19,000, the region has taken on the vibe of a boomtown. Across the three rural counties of the Mid-Columbia Basin—Chelan, Douglas and Grant—orchards and farm fields now share the rolling landscape with mines of every size, from industrial-scale facilities to repurposed warehouses to cargo containers and even backyard sheds. Outsiders are so eager to turn the basin’s power into cryptocurrency that this winter, several would-be miners from Asia flew their private jet into the local airport, took a rental car to one of the local dams, and, according to a utility official, politely informed staff at the dam visitors center, “We want to see the dam master because we want to buy some electricity.”
One of Bitcoin’s most appealing features is its ruthless verification process, which greatly minimizes the risk of fraud. Since Bitcoin is decentralized, volunteers—referred to as “miners”—constantly verify and update the blockchain. Once a specific amount of transactions are verified, another block is added to the blockchain and business continues per usual.
The trick, though, was finding a location where you could put all that cheap power to work. You needed an existing building, because in those days, when bitcoin was trading for just a few dollars, no one could afford to build something new. You needed space for a few hundred high-speed computer servers, and also for the heavy-duty cooling system to keep them from melting down as they churned out the trillions of calculations necessary to mine bitcoin. Above all, you needed a location that could handle a lot of electricity—a quarter of a megawatt, maybe, or even a half a megawatt, enough to light up a couple hundred homes.
As more miners join, the rate of block creation increases. As the rate of block generation increases, the difficulty rises to compensate, which has a balancing of effect due to reducing the rate of block-creation. Any blocks released by malicious miners that do not meet the required difficulty target will simply be rejected by the other participants in the network.
Bitcoin is the first cryptocurrency, a concept that was discussed in the late 90s. The first Bitcoin specification and proof of concept was published in 2009 in a cryptography mailing list. The concept was presented by a person or group known as Satoshi Nakamoto. The real identity of Nakamoto has been a mystery since that time, with various theories on who the individual or group may be.

For years, few residents really grasped how appealing their region was to miners, who mainly did their esoteric calculations quietly tucked away in warehouses and basements. But those days are gone. Over the past two years, and especially during 2017, when the price of a single bitcoin jumped from $1,000 to more than $19,000, the region has taken on the vibe of a boomtown. Across the three rural counties of the Mid-Columbia Basin—Chelan, Douglas and Grant—orchards and farm fields now share the rolling landscape with mines of every size, from industrial-scale facilities to repurposed warehouses to cargo containers and even backyard sheds. Outsiders are so eager to turn the basin’s power into cryptocurrency that this winter, several would-be miners from Asia flew their private jet into the local airport, took a rental car to one of the local dams, and, according to a utility official, politely informed staff at the dam visitors center, “We want to see the dam master because we want to buy some electricity.”
In the zero-sum game that cryptocurrency has become, one man’s free money is another man’s headache. In the Mid-Columbia Basin, the latter category includes John Stoll, who oversees Chelan County Public Utility District’s maintenance crews. Stoll regards people like Benny as “rogue operators,” the utility’s term for small players who mine without getting proper permits and equipment upgrades, and whose numbers have soared in the past 12 months. Though only a fraction of the size of their commercial peers, these operators can still overwhelm residential electric grids. In extreme cases, insulation can melt off wires. Transformers will overheat. In one instance last year, the utility says, a miner overloaded a transformer and caused a brush fire.

Meanwhile, the miners in the basin have embarked on some image polishing. Carlson and Salcido, in particular, have worked hard to placate utility officialdom. Miners have agreed to pay heavy hook-up fees and to finance some of the needed infrastructure upgrades. They’ve also labored to build a case for the sector’s broader economic benefits—like sales tax revenues. They say mining could help offset some of the hundreds of jobs lost when the region’s other big power user—the huge Alcoa aluminum smelter just south of Wenatchee—was idled a few years ago.
In March 2013 the blockchain temporarily split into two independent chains with different rules. The two blockchains operated simultaneously for six hours, each with its own version of the transaction history. Normal operation was restored when the majority of the network downgraded to version 0.7 of the bitcoin software.[36] The Mt. Gox exchange briefly halted bitcoin deposits and the price dropped by 23% to $37[37][38] before recovering to previous level of approximately $48 in the following hours.[39] The US Financial Crimes Enforcement Network (FinCEN) established regulatory guidelines for "decentralized virtual currencies" such as bitcoin, classifying American bitcoin miners who sell their generated bitcoins as Money Service Businesses (MSBs), that are subject to registration or other legal obligations.[40][41][42] In April, exchanges BitInstant and Mt. Gox experienced processing delays due to insufficient capacity[43] resulting in the bitcoin price dropping from $266 to $76 before returning to $160 within six hours.[44] The bitcoin price rose to $259 on 10 April, but then crashed by 83% to $45 over the next three days.[34] On 15 May 2013, US authorities seized accounts associated with Mt. Gox after discovering it had not registered as a money transmitter with FinCEN in the US.[45][46] On 23 June 2013, the US Drug Enforcement Administration (DEA) listed 11.02 bitcoins as a seized asset in a United States Department of Justice seizure notice pursuant to 21 U.S.C. § 881.[47] This marked the first time a government agency had seized bitcoin.[48][49] The FBI seized about 26,000 bitcoins in October 2013 from the dark web website Silk Road during the arrest of Ross William Ulbricht.[50][51][52] Bitcoin's price rose to $755 on 19 November and crashed by 50% to $378 the same day. On 30 November 2013 the price reached $1,163 before starting a long-term crash, declining by 87% to $152 in January 2015.[34] On 5 December 2013, the People's Bank of China prohibited Chinese financial institutions from using bitcoins.[53] After the announcement, the value of bitcoins dropped,[54] and Baidu no longer accepted bitcoins for certain services.[55] Buying real-world goods with any virtual currency had been illegal in China since at least 2009.[56]
×