I think many institutions are buying quietly before the next rally and before the next halving: http://www.bitcoinblockhalf.com/ This is a great time to accumulate. The upside potential overweighs many times any downside risk. And with the stock market peaking, more money will start flowing into Bitcoin. submitted by /u/simplelifestyle [link] [comments]
Here’s how it works: Say Alice wants to transfer one bitcoin to Bob. First Bob sets up a digital address for Alice to send the money to, along with a key allowing him to access the money once it’s there. It works sort-of like an email account and password, except that Bob sets up a new address and key for every incoming transaction (he doesn’t have to do this, but it’s highly recommended).
Risk Disclosure: Fusion Media will not accept any liability for loss or damage as a result of reliance on the information contained within this website including data, quotes, charts and buy/sell signals. Please be fully informed regarding the risks and costs associated with trading the financial markets, it is one of the riskiest investment forms possible. Currency trading on margin involves high risk, and is not suitable for all investors. Trading or investing in cryptocurrencies carries with it potential risks. Prices of cryptocurrencies are extremely volatile and may be affected by external factors such as financial, regulatory or political events. Cryptocurrencies are not suitable for all investors. Before deciding to trade foreign exchange or any other financial instrument or cryptocurrencies you should carefully consider your investment objectives, level of experience, and risk appetite.
Bitcoin mining operations take a lot of effort and power, and the sheer amount of competition makes it difficult for newcomers to enter the race and profit. A new miner would not only need to have adequate computing power and the knowledge to use it to outcompete the competition, but would also need the extensive amount of capital necessary to fund the operations.

The process of mining bitcoins works like a lottery. Bitcoin miners are competing to produce hashes—alphanumeric strings of a fixed length that are calculated from data of an arbitrary length. They’re producing the hashes from a combination of three pieces of data: new blocks of Bitcoin transactions; the last block on the blockchain; and a random number. These are collectively referred to as the “block header” for the current block. Each time miners perform the hash function on the block header with a new random number, they get a new result. To win the lottery, a miner must find a hash that begins with a certain number of zeroes. Just how many zeroes are required is a shifting parameter determined by how much computing power is attached to the Bitcoin network. Every two weeks, on average, the mining software automatically readjusts the number of leading zeros needed—the difficulty level—by looking at how fast new blocks of Bitcoin transactions were added. The algorithm is aiming for a latency of 10 minutes between blocks. When miners boost the computing power on the network, they temporarily increase the rate of block creation. The network senses the change and then ratchets up the difficulty level. When a miner’s computer finds a winning hash, it broadcasts the block header to its next peers in the Bitcoin network, which check it and then propagate it further.
For one, proof of work prevents miners from creating bitcoins out of thin air: they must burn real energy to earn them. And two, proof of work ossifies Bitcoin’s history. If an attacker were to try and change a transaction that happened in the past, that attacker would have to redo all of the work that has been done since to catch up and establish the longest chain. This is practically impossible and is why miners are said to “secure” the Bitcoin network.
The difficulty is the measure of how difficult it is to find a new block compared to the easiest it can ever be. The rate is recalculated every 2,016 blocks to a value such that the previous 2,016 blocks would have been generated in exactly one fortnight (two weeks) had everyone been mining at this difficulty. This is expected yield, on average, one block every ten minutes.
How do they find this number? By guessing at random. The hash function makes it impossible to predict what the output will be. So, miners guess the mystery number and apply the hash function to the combination of that guessed number and the data in the block. The resulting hash has to start with a pre-established number of zeroes. There's no way of knowing which number will work, because two consecutive integers will give wildly varying results. What's more, there may be several nonces that produce the desired result, or there may be none (in which case the miners keep trying, but with a different block configuration).

Because of bitcoin's decentralized nature and its trading on online exchanges located in many countries, regulation of bitcoin has been difficult. However, the use of bitcoin can be criminalized, and shutting down exchanges and the peer-to-peer economy in a given country would constitute a de facto ban.[164] The legal status of bitcoin varies substantially from country to country and is still undefined or changing in many of them. Regulations and bans that apply to bitcoin probably extend to similar cryptocurrency systems.[165]
Let’s start with what it’s not doing. Your computer is not blasting through the cavernous depths of the internet in search of digital ore that can be fashioned into bitcoin bullion. There is no ore, and bitcoin mining doesn’t involve extracting or smelting anything. It’s called mining only because the people who do it are the ones who get new bitcoins, and because bitcoin is a finite resource liberated in small amounts over time, like gold, or anything else that is mined. (The size of each batch of coins drops by half roughly every four years, and around 2140, it will be cut to zero, capping the total number of bitcoins in circulation at 21 million.) But the analogy ends there.
Bitcoin is a digital asset designed to work in peer-to-peer transactions as a currency.[5][128] Bitcoins have three qualities useful in a currency, according to The Economist in January 2015: they are "hard to earn, limited in supply and easy to verify".[129] However, as of 2015 bitcoin functions more as a payment processor than as a currency.[130][30]

Ledger’s main competitor in the market space is the original Trezor hardware wallet. One of the key advantages of the Ledger over the Trezor is the freedom to create your own unique passphrases. Both the Ledger and the Trezor require 20 passphrases for recovery and reset purposes; however, the Trezor package sends the user a random list. The Ledger gives the user the freedom to create their own. Additionally, if aesthetics matter to you, the Ledger sports an arguably sleeker design than the Trezor.

News drives attention, and attention drives understanding. While many people have flocked to cryptocurrencies purely in search of financial gain, there are a ton of people that are simply curious. Some peoples are sticking around and trying to understand what cryptos are all about. While more users increases Bitcoin’s network effect, more people forming in-depth understandings of cryptos also strengthen the active Bitcoin community.
The other reason is safety. Looking at 2009 alone, 32,489 blocks were mined; at the then-reward rate of 50 BTC per block, the total payout in 2009 was 1,624,500 BTC, which at today’s prices is over $900 million. One may conclude that only Satoshi and perhaps a few other people were mining through 2009, and that they possess a majority of that $900 million worth of BTC. Someone in possession of that much BTC could become a target of criminals, especially since bitcoins are less like stocks and more like cash, where the private keys needed to authorize spending could be printed out and literally kept under a mattress. While it's likely the inventor of Bitcoin would take precautions to make any extortion-induced transfers traceable, remaining anonymous is a good way for Satoshi to limit exposure.
The incremental complexity and technological know-how needed for this method are both downsides to the paper wallet approach. Cold storage solutions and hardware wallets are less nimble than other options, too; if the price of bitcoin were crashing, for example, you might find yourself slower to the draw than if you merely kept your BTC on a site like Coinbase.

In 2014, researchers at the University of Kentucky found "robust evidence that computer programming enthusiasts and illegal activity drive interest in bitcoin, and find limited or no support for political and investment motives".[127] Australian researchers have estimated that 25% of all bitcoin users and 44% of all bitcoin transactions are associated with illegal activity as of April 2017. There were an estimated 24 million bitcoin users primarily using bitcoin for illegal activity. They held $8 billion worth of bitcoin, and made 36 million transactions valued at $72 billion.[227][228] A group of researches analyzed bitcoin transactions in 2016 and came to a conclusion that "some recent concerns regarding the use of bitcoin for illegal transactions at the present time might be overstated".[229]
Claiming to be the "world's most popular digital wallet," Blockchain.info boasts more than 24 million wallets and has supported more than 100 million transactions. Security is a top priority, and with many longtime cryptocurrency enthusiasts comfortably keeping their spoils there for years, even as Mt. Gox and Bitfinex were breached, it would have to be.
Bitcoin mining is a peer-to-peer process of adding data into Bitcoin’s public ledger in order to verify and secure a contract. Groups of recorded transactions are gathered in blocks and then added into the Bitcoin blockchain. Bitcoin mining requires a lot of resources to protect the network from the possibility of altering past transaction data by making all attempts in changing blocks inefficient for the intruder. Bitcoin mining is rewarded by the network through transaction fees and subsidies of new coins to encourage miners to spend their resources on mining new Bitcoin blocks. As Bitcoin mining is increasingly difficult, it has become impossible to attempt mining as an individual. As a result, most Bitcoin mining is being done by mining pools, which include several participants sharing their reward. Bitcoin mining is controversial, as it is a great tool for securing transactions but complicating the scaling of the network. 
The chief selling point of this hardware wallet is that you no longer have to write down several passphrases to recover your assets in case of an emergency. Rather, when you first setup the DigitalBitbox all this information is automatically stored on the SD card. No doubt, this has the potential to save many investors headaches in the future. Granted, you must still ensure that the SD card is kept somewhere safe and you should only ever have into inserted in the DigitalBitbox on setup or when resetting.
The first set of data you will want to use for discovering if Bitcoin mining can be profitable for you or not is the following but not limited to: cost of Bitcoin ASIC miner(s), cost of electricity to power miner (how much you are charged per kwh), cost of equipment to run the miner(s), cost of PSU (power supply unit), cost of network gear, cost of internet access, costs of other supporting gear like shelving, racks, cables, etc., cost of building or data center if applicable. Continue Reading ➞
Requiring a proof of work to accept a new block to the blockchain was Satoshi Nakamoto's key innovation. The mining process involves identifying a block that, when hashed twice with SHA-256, yields a number smaller than the given difficulty target. While the average work required increases in inverse proportion to the difficulty target, a hash can always be verified by executing a single round of double SHA-256.

Keys come in pairs. The public key is used to encrypt the message whereas the private key decrypts the message. The only person with the private key is you. Everyone else is free to have your public key. As a result, everyone can send you encrypted messages without having to agree on a key beforehand. They simply use your public key and you untangle the gibberish by using your private key.
Malachi Salcido: The Local Talent Salcido, a Wenatchee native and building contractor, studied other miners before launching his own bitcoin operation in 2014. He’s now one of the biggest miners in the basin, and has worked hard to convince the community that bitcoin and the blockchain could transform the region into a technology hub. “What you can actually do with the technology, we’re only beginning to discover,” says Salcido, pictured above in one of his mines. The basin is “building a platform that the entire world is going to use.” | Patrick Cavan Brown for Politico Magazine

Because the reward for mining blocks is so high (currently at 12.5 BTC), the competition to win that reward is also fierce among miners. At any moment, hundreds of thousands of supercomputers all around the world are competing to mine the next block and win that reward. In fact, according to howmuch.com, ” the total power of all the computers mining Bitcoin is over 1000 times more powerful than the world’s top 500 supercomputers combined”.
To lower the costs, bitcoin miners have set up in places like Iceland where geothermal energy is cheap and cooling Arctic air is free.[204] Bitcoin miners are known to use hydroelectric power in Tibet, Quebec, Washington (state), and Austria to reduce electricity costs.[203][205][206][207] Miners are attracted to suppliers such as Hydro Quebec that have energy surpluses.[208] According to a University of Cambridge study, much of bitcoin mining is done in China, where electricity is subsidized by the government.[209][210]
The difficulty is a number that regulates how long it takes for miners to add new blocks of transactions to the blockchain. Because the target is such an unwieldy number with tons of digits, people generally use a simpler number to express the current target. This number is called the mining difficulty.  This difficulty value updates every 2 weeks to ensure that it takes 10 minutes (on average) to add a new block to the blockchain. The difficulty is so important because, it ensures that blocks of transactions are added to the blockchain at regular intervals, even as more miners join the network. If the difficulty remained the same, it would take less time between adding new blocks to the blockchain as new miners join the network. The difficulty adjusts every 2016 blocks. At this interval, each node takes the expected time for these 2016 blocks to be mined (2016 x 10 minutes), and divides it by the actual time it took. It can be calculated as follows:
Lauren Miehe: The Prospector With a knack for turning old buildings into bitcoin mines, Miehe has helped numerous other outsiders set up mining operations in the basin and now manages sites for other miners. He’s been stunned by the interest in the region since bitcoin prices took off last year. “Right now, everyone is in full-greed mode,” he says. Here, Miehe works at his original mine, a half-megawatt operation a few miles from the Columbia River. | Patrick Cavan Brown for Politico Magazine
A CMU researcher estimated that in 2012, 4.5% to 9% of all transactions on all exchanges in the world were for drug trades on a single dark web drugs market, Silk Road.[30] Child pornography,[31] murder-for-hire services,[32] and weapons[33] are also allegedly available on black market sites that sell in bitcoin. Due to the anonymous nature and the lack of central control on these markets, it is hard to know whether the services are real or just trying to take the bitcoins.[34]

Jump up ^ Beikverdi, A.; Song, J. (June 2015). "Trend of centralization in Bitcoin's distributed network". 2015 IEEE/ACIS 16th International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD): 1–6. doi:10.1109/SNPD.2015.7176229. ISBN 978-1-4799-8676-7. Archived from the original on 26 January 2018.


An ASIC (application-specific integrated circuit) is a microchip designed for a special application, such as a particular kind of transmission protocol or a hand-held computer.  An ASIC is a chip designed specifically to do only one task. Unlike FPGAs, an ASIC cannot be repurposed to perform other tasks. An ASIC designed to mine Bitcoins can only mine Bitcoins and will only ever mine Bitcoins. The inflexibility of an ASIC is offset by the fact that it offers a 100x increase in hashing power compared to the CPU and GPUs, while reducing power consumption compared to all the previous technologies.
About a year and a half after the network started, it was discovered that high end graphics cards were much more efficient at bitcoin mining and the landscape changed. CPU bitcoin mining gave way to the GPU (Graphical Processing Unit). The massively parallel nature of some GPUs allowed for a 50x to 100x increase in bitcoin mining power while using far less power per unit of work.
In the process of mining, each Bitcoin miner is competing with all the other miners on the network to be the first one to correctly assemble the outstanding transactions into a block by solving those specialized math puzzles. In exchange for validating the transactions and solving these problems. Miners also hold the strength and security of the Bitcoin network. This is very important for security because in order to attack the network, an attacker would need to have over half of the total computational power of the network. This attack is referred to as the 51% attack. The more decentralized the miners mining Bitcoin, the more difficult and expensive it becomes to perform this attack.
Unlike ever before, the world is now able to transfer and receive funds locally and internationally at low costs, and the potential is increased given that a significant number of people in developing countries do not have access to the formal financial system, and compared to the developed countries where the competition is fierce in the financial institutions, little number of banks available in the under-developed countries imposed very high fees during international transactions.
Computing power is often bundled together or "pooled" to reduce variance in miner income. Individual mining rigs often have to wait for long periods to confirm a block of transactions and receive payment. In a pool, all participating miners get paid every time a participating server solves a block. This payment depends on the amount of work an individual miner contributed to help find that block.[82]
×