There will be stepwise refinement of the ASIC products and increases in efficiency, but nothing will offer the 50x to 100x increase in hashing power or 7x reduction in power usage that moves from previous technologies offered. This makes power consumption on an ASIC device the single most important factor of any ASIC product, as the expected useful lifetime of an ASIC mining device is longer than the entire history of bitcoin mining.
What separated these survivors from the quitters and the double-downers, Carlson concluded, was simply the price of electricity. Survivors either lived in or had moved to places like China or Iceland or Venezuela, where electricity was cheap enough for bitcoin to be profitable. Carlson knew that if he could find a place where the power wasn’t just cheap, but really cheap, he’d be able to mine bitcoin both profitably and on an industrial scale.
The other reason is safety. Looking at 2009 alone, 32,489 blocks were mined; at the then-reward rate of 50 BTC per block, the total payout in 2009 was 1,624,500 BTC, which at today’s prices is over $900 million. One may conclude that only Satoshi and perhaps a few other people were mining through 2009, and that they possess a majority of that $900 million worth of BTC. Someone in possession of that much BTC could become a target of criminals, especially since bitcoins are less like stocks and more like cash, where the private keys needed to authorize spending could be printed out and literally kept under a mattress. While it's likely the inventor of Bitcoin would take precautions to make any extortion-induced transfers traceable, remaining anonymous is a good way for Satoshi to limit exposure.
Bitcoin Mining is a peer-to-peer computer process used to secure and verify bitcoin transactions—payments from one user to another on a decentralized network. Mining involves adding bitcoin transaction data to Bitcoin's global public ledger of past transactions. Each group of transactions is called a block. Blocks are secured by Bitcoin miners and build on top of each other forming a chain. This ledger of past transactions is called the blockchain. The blockchain serves to confirm transactions to the rest of the network as having taken place. Bitcoin nodes use the blockchain to distinguish legitimate Bitcoin transactions from attempts to re-spend coins that have already been spent elsewhere.
Instead, the ledger is broken up into blocks: discrete transaction logs that contain 10 minutes worth of bitcoin activity apiece. Every block includes a reference to the block that came before it, and you can follow the links backward from the most recent block to the very first block, when bitcoin creator Satoshi Nakamoto conjured the first bitcoins into existence.
The Bitcoin mining network difficulty is the measure of how difficult it is to find a new block compared to the easiest it can ever be. It is recalculated every 2016 blocks to a value such that the previous 2016 blocks would have been generated in exactly two weeks had everyone been mining at this difficulty. This will yield, on average, one block every ten minutes.
When you pay someone in bitcoin, you set in motion a process of escalating, energy-intensive complexity. Your payment is basically an electronic message, which contains the complete lineage of your bitcoin, along with data about who you’re sending it to (and, if you choose, a small processing fee). That message gets converted by encryption software into a long string of letters and numbers, which is then broadcast to every miner on the bitcoin network (there are tens of thousands of them, all over the world). Each miner then gathers your encrypted payment message, along with any other payment messages on the network at the time (usually in batches of around 2,000), into what’s called a block. The miner then uses special software to authenticate each payment in the block—verifying, for example, that you owned the bitcoin you’re sending, and that you haven’t already sent that same bitcoin to someone else.
Unfortunately, “participating” in Bitcoin mining isn’t the same thing as actually making money from it. The new ASIC chips on the market today are specifically designed for mining Bitcoin. They’re really good at Bitcoin mining, and every time someone adds a new ASIC-powered computer to the Bitcoin network, it makes Bitcoin mining that much more difficult.
In 2014 prices started at $770 and fell to $314 for the year.[31] In February 2014 the Mt. Gox exchange, the largest bitcoin exchange at the time, said that 850,000 bitcoins had been stolen from its customers, amounting to almost $500 million. Bitcoin's price fell by almost half, from $867 to $439 (a 49% drop). Prices remained low until late 2016.[citation needed]