Bitcoin miners were now caught in the same vicious cycle that real miners confront—except on a much more accelerated timeframe. To maintain their output, miners had to buy more servers, or upgrade to the more powerful servers, but the new calculating power simply boosted the solution difficulty even more quickly. In effect, your mine was becoming outdated as soon as you launched it, and the only hope of moving forward profitably was to adopt a kind of perpetual scale-up: Your existing mine had to be large enough to pay for your next, larger mine. Many miners responded by gathering into vast collectives, pooling their calculating resources and sharing the bitcoin rewards. Others shifted away from mining to hosting facilities for other miners. But whether you were mining or hosting, mining entered “a scaling race,” says Carlson, whose own operations marched steadily from 250 kilowatts to 1.5 megawatts to 5 megawatts. And it was a race: Any delay in getting your machines installed and mining simply meant you’d be coming on line when the coins were even harder to mine.
When you pay someone in bitcoin, you set in motion a process of escalating, energy-intensive complexity. Your payment is basically an electronic message, which contains the complete lineage of your bitcoin, along with data about who you’re sending it to (and, if you choose, a small processing fee). That message gets converted by encryption software into a long string of letters and numbers, which is then broadcast to every miner on the bitcoin network (there are tens of thousands of them, all over the world). Each miner then gathers your encrypted payment message, along with any other payment messages on the network at the time (usually in batches of around 2,000), into what’s called a block. The miner then uses special software to authenticate each payment in the block—verifying, for example, that you owned the bitcoin you’re sending, and that you haven’t already sent that same bitcoin to someone else.
The Mid-Columbia Basin isn’t the only location where the virtual realm of cryptocurrency is colliding with the real world of megawatts and real estate. In places like China, Venezuela and Iceland, cheap land and even cheaper electricity have resulted in bustling mining hubs. But the basin, by dint of its early start, has emerged as one of the biggest boomtowns. By the end of 2018, according to some estimates, miners here could account for anywhere from 15 to 30 percent of all bitcoin mining in the world, and impressive shares of other cryptocurrencies, such as Ethereum and Litecoin. And as with any boomtown, that success has created tensions. There have been disputes between miners and locals, bankruptcies and bribery attempts, lawsuits, even a kind of intensifying guerrilla warfare between local utility crews and a shadowy army of bootleg miners who set up their servers in basements and garages and max out the local electrical grids.
Lauren Miehe: The Prospector With a knack for turning old buildings into bitcoin mines, Miehe has helped numerous other outsiders set up mining operations in the basin and now manages sites for other miners. He’s been stunned by the interest in the region since bitcoin prices took off last year. “Right now, everyone is in full-greed mode,” he says. Here, Miehe works at his original mine, a half-megawatt operation a few miles from the Columbia River. | Patrick Cavan Brown for Politico Magazine
Instead, the ledger is broken up into blocks: discrete transaction logs that contain 10 minutes worth of bitcoin activity apiece. Every block includes a reference to the block that came before it, and you can follow the links backward from the most recent block to the very first block, when bitcoin creator Satoshi Nakamoto conjured the first bitcoins into existence.
Numerous people have been suggested as possible Satoshi Nakamotos by major media outlets. On Oct. 10, 2011, The New Yorker published an article speculating that Nakamoto might be Irish cryptography student Michael Clear, or economic sociologist Vili Lehdonvirta. A day later, Fast Company suggested that Nakamoto could be a group of three people – Neal King, Vladimir Oksman and Charles Bry – who together appear on a patent related to secure communications that was filed two months before bitcoin.org was registered. A Vice article published in May 2013 added more suspects to the list, including Gavin Andresen, the Bitcoin project’s lead developer; Jed McCaleb, co-founder of now-defunct Bitcoin exchange Mt. Gox; and famed Japanese mathematician Shinichi Mochizuki. 

To add a new block to the chain, a miner has to finish what’s called a cryptographic proof-of-work problem. Such problems are impossible to solve without applying a ton of brute computing force, so if you have a solution in hand, it’s proof that you’ve done a certain quantity of computational work. The computational problem is different for every block in the chain, and it involves a particular kind of algorithm called a hash function.
If Eve offers to pay Alice a bitcoin in exchange for goods and signs a corresponding transaction, it is still possible that she also creates a different transaction at the same time sending the same bitcoin to Bob. By the rules, the network accepts only one of the transactions. This is called a race attack, since there is a race which transaction will be accepted first. Alice can reduce the risk of race attack stipulating that she will not deliver the goods until Eve's payment to Alice appears in the blockchain.[15]

Bitcoin mining is a competitive endeavor. An "arms race" has been observed through the various hashing technologies that have been used to mine bitcoins: basic CPUs, high-end GPUs common in many gaming computers, FPGAs and ASICs all have been used, each reducing the profitability of the less-specialized technology. Bitcoin-specific ASICs are now the primary method of mining bitcoin and have surpassed GPU speed by as much as 300 fold. As bitcoins have become more difficult to mine, computer hardware manufacturing companies have seen an increase in sales of high-end ASIC products.[7]


Carlson has become the face of the Mid-Columbia Basin crypto boom. Articulate, infectiously optimistic, with graying hair and a trim beard, the Microsoft software developer-turned-serial entrepreneur has built a series of mines, made (and lost) several bitcoin fortunes and endured countless setbacks to become one of the region’s largest players. Other local miners credit Carlson for launching the basin’s boom, back in 2012, when he showed up in a battered Honda in the middle of a snowstorm and set up his servers in an old furniture store. Carlson wouldn’t go that far, but the 47-year-old was one of the first people to understand, back when bitcoin was still mainly something video gamers mined in their basements, that you might make serious money mining bitcoin at scale—but only if you could find a place with cheap electricity.
Transactions are verified by network nodes through cryptography and recorded in a public distributed ledger called a blockchain. Bitcoin was invented by an unknown person or group of people using the name Satoshi Nakamoto[9] and released as open-source software in 2009.[10] Bitcoins are created as a reward for a process known as mining. They can be exchanged for other currencies,[11] products, and services. Research produced by the University of Cambridge estimates that in 2017, there were 2.9 to 5.8 million unique users using a cryptocurrency wallet, most of them using bitcoin.[12]
×