But Bolz, a longtime critic of cryptocurrency, says local concerns go beyond economics: Many residents he hears from aren’t keen to see so much public power sold to an industry whose chief product is, in their minds, of value only to speculators and criminals. “I mean, this is a conservative community, and they’re like, ‘What the hell’s wrong with dollars?’” says Bolz. “If you just went out and did a poll of Chelan County, and asked people, ‘Do you want us to be involved in the bitcoin industry, they would say not only ‘No,’ but ‘Hell no.’”
Numerous people have been suggested as possible Satoshi Nakamotos by major media outlets. On Oct. 10, 2011, The New Yorker published an article speculating that Nakamoto might be Irish cryptography student Michael Clear, or economic sociologist Vili Lehdonvirta. A day later, Fast Company suggested that Nakamoto could be a group of three people – Neal King, Vladimir Oksman and Charles Bry – who together appear on a patent related to secure communications that was filed two months before bitcoin.org was registered. A Vice article published in May 2013 added more suspects to the list, including Gavin Andresen, the Bitcoin project’s lead developer; Jed McCaleb, co-founder of now-defunct Bitcoin exchange Mt. Gox; and famed Japanese mathematician Shinichi Mochizuki. 

Bitcoin solves the "double spending problem" of electronic currencies (in which digital assets can easily be copied and re-used) through an ingenious combination of cryptography and economic incentives. In electronic fiat currencies, this function is fulfilled by banks, which gives them control over the traditional system. With bitcoin, the integrity of the transactions is maintained by a distributed and open network, owned by no-one.
Bitcoin was the first decentralized digital currency; an online peer-to-peer payment system, without the need for third-party intermediaries such as banks. It was first released in 2008 and has since grown to be the largest cryptocurrency when measured by market cap. Bitcoins are not issued like traditional currency, they are digital and “mined” by powerful servers over time. It was designed to have a fixed supply of 21 million coins.
The difficulty is a number that regulates how long it takes for miners to add new blocks of transactions to the blockchain. Because the target is such an unwieldy number with tons of digits, people generally use a simpler number to express the current target. This number is called the mining difficulty.  This difficulty value updates every 2 weeks to ensure that it takes 10 minutes (on average) to add a new block to the blockchain. The difficulty is so important because, it ensures that blocks of transactions are added to the blockchain at regular intervals, even as more miners join the network. If the difficulty remained the same, it would take less time between adding new blocks to the blockchain as new miners join the network. The difficulty adjusts every 2016 blocks. At this interval, each node takes the expected time for these 2016 blocks to be mined (2016 x 10 minutes), and divides it by the actual time it took. It can be calculated as follows:
As you can imagine, since mining is based on a form of guessing, for each block, a different miner will guess the number and be granted the right to update the blockchain. Of course, the miners with more computing power will succeed more often, but due to the law of statistical probability, it’s highly unlikely that the same miner will succeed every time.
After some months later, after the network started, it was discovered that high end graphics cards were much more efficient at Bitcoin mining. The Graphical Processing Unit (GPU) handles complex 3D imaging algorithms, therefore, CPU Bitcoin mining gave way to the GPU. The massively parallel nature of some GPUs allowed for a 50x to 100x increase in Bitcoin mining power while using far less power per unit of work. But this still wasn’t the most power-efficient option, as both CPUs and GPUs were very efficient at completing many tasks simultaneously, and consumed significant power to do so, whereas Bitcoin in essence just needed a processor that performed its cryptographic hash function ultra-efficiently.
Though it is tempting to believe the media's spin that Satoshi Nakamoto is a lone, quixotic genius who created Bitcoin out of thin air, such innovations do not happen in a vacuum. All major scientific discoveries, no matter how original-seeming, were built on previously existing research. There are precursors to Bitcoin: Adam Back’s Hashcash, invented in 1997, and subsequently Wei Dai’s b-money, Nick Szabo’s bit-gold and Hal Finney’s Reusable Proof of Work. The Bitcoin white paper itself cites Hashcash and b-money, as well as various other works spanning several research fields.

The bitcoin blockchain is a public ledger that records bitcoin transactions.[64] It is implemented as a chain of blocks, each block containing a hash of the previous block up to the genesis block[a] of the chain. A network of communicating nodes running bitcoin software maintains the blockchain.[30]:215–219 Transactions of the form payer X sends Y bitcoins to payee Z are broadcast to this network using readily available software applications.
×