Lauren Miehe: The Prospector With a knack for turning old buildings into bitcoin mines, Miehe has helped numerous other outsiders set up mining operations in the basin and now manages sites for other miners. He’s been stunned by the interest in the region since bitcoin prices took off last year. “Right now, everyone is in full-greed mode,” he says. Here, Miehe works at his original mine, a half-megawatt operation a few miles from the Columbia River. | Patrick Cavan Brown for Politico Magazine
You can look at this hash as a really long number. (It's a hexadecimal number, meaning the letters A-F are the digits 10-15.) To ensure that blocks are found roughly every ten minutes, there is what's called a difficulty target. To create a valid block your miner has to find a hash that is below the difficulty target. So if for example the difficulty target is
On 1 August 2017, a hard fork of bitcoin was created, known as Bitcoin Cash.[103] Bitcoin Cash has a larger block size limit and had an identical blockchain at the time of fork. On 24 October 2017 another hard fork, Bitcoin Gold, was created. Bitcoin Gold changes the proof-of-work algorithm used in mining, as the developers felt that mining had become too specialized.[104]
And, inevitably, there was a growing tension with the utilities, which were finally grasping the scale of the miners’ ambitions. In 2014, the public utility district in Chelan County received requests from would-be miners for a total of 220 megawatts—a startling development in a county whose 70,000 residents were then using barely 200 megawatts. Similar patterns were emerging across the river in neighboring Douglas and Grant counties, where power is also cheap.

What bitcoin miners actually do could be better described as competitive bookkeeping. Miners build and maintain a gigantic public ledger containing a record of every bitcoin transaction in history. Every time somebody wants to send bitcoins to somebody else, the transfer has to be validated by miners: They check the ledger to make sure the sender isn’t transferring money she doesn’t have. If the transfer checks out, miners add it to the ledger. Finally, to protect that ledger from getting hacked, miners seal it behind layers and layers of computational work—too much for a would-be fraudster to possibly complete.
Instead, the ledger is broken up into blocks: discrete transaction logs that contain 10 minutes worth of bitcoin activity apiece. Every block includes a reference to the block that came before it, and you can follow the links backward from the most recent block to the very first block, when bitcoin creator Satoshi Nakamoto conjured the first bitcoins into existence.
If fewer people begin to accept Bitcoin as a currency, these digital units may lose value and could become worthless. There is already plenty of competition, and though Bitcoin has a huge lead over the other 100-odd digital currencies that have sprung up, thanks to its brand recognition and venture capital money, a technological break-through in the form of a better virtual coin is always a threat.
Speculation drives numbers. Many Bitcoin users are holding onto their bitcoins in hopes of selling them off for an enormous profit one day. With news articles portraying Bitcoin millionaires as lucky kids who got in early, you can’t really blame them. For example, if you had spent your $5 latte money on 2,000 bitcoins one morning in 2010, they would be worth about $5.4 million today. Makes you really wish you’d managed your Starbucks budget better, doesn’t it?

Yes it can—but it won’t do it much good. The reason is that Google’s servers aren’t fit for solving the Bitcoin mining problem in the same way that ASICs are. For reference, if Google harnesses all of its servers for the sole purpose of mining Bitcoin (and abandons all other business operations), it will account for a very small percent (less than 0.001%) of the total mining power the Bitcoin network currently has.
Regulatory Risk: Bitcoins are a rival to government currency and may be used for black market transactions, money laundering, illegal activities or tax evasion. As a result, governments may seek to regulate, restrict or ban the use and sale of bitcoins, and some already have. Others are coming up with various rules. For example, in 2015, the New York State Department of Financial Services finalized regulations that would require companies dealing with the buy, sell, transfer or storage of bitcoins to record the identity of customers, have a compliance officer and maintain capital reserves. The transactions worth $10,000 or more will have to be recorded and reported.
To save money on cooling, some mine operators have opted for cooler climates. BitFury also runs three large mining facilities, one of which is in Iceland to benefit from the cool weather. “Many data centers around the world have 30 to 40 percent of electricity costs going to cooling,” explains Valery Vavilov, the CEO of BitFury. “This is not an issue in our Iceland data center.”
Then two things happen. New transactions are added to the Bitcoin blockchain ledger, and the winning miner is rewarded with newly minted bitcoins. The miner also collects small fees that users voluntarily tack onto their transactions as a way of pushing them to the head of the line. It’s ultimately an exchange of electricity for coins, mediated by a whole lot of computing power. The probability of an individual miner winning the lottery depends entirely on the speed at which that miner can generate new hashes relative to the speed of all other miners combined. In this way, the lottery is more like a raffle, where the more tickets you buy in comparison to everyone else makes it more likely that your name will be pulled out of the hat.
Home Sweet Repair Shop: One building on the grounds houses a lunchroom, operational center, repair shop, and dormitory. A few dozen employees run the entire facility. Their jobs include scanning the racks for malfunctioning machines, cleaning the cooling fans, fixing broken rigs, and installing upgraded machines. Many of the employees are recent engineering graduates from the local university.

A Bitcoin wallet is a software program where Bitcoins are stored. To be technically accurate, Bitcoins are not stored anywhere; there is a private key (secret number) for every Bitcoin address that is saved in the Bitcoin wallet of the person who owns the balance. Bitcoin wallets facilitate sending and receiving Bitcoins and gives ownership of the Bitcoin balance to the user.  The Bitcoin wallet comes in many forms; desktop, mobile, web and hardware are the four main types of wallets.
Satoshi's anonymity often raises unjustified concerns because of a misunderstanding of Bitcoin's open-source nature. Everyone has access to all of the source code all of the time and any developer can review or modify the software code. As such, the identity of Bitcoin's inventor is probably as relevant today as the identity of the person who invented paper.
Carlson has become the face of the Mid-Columbia Basin crypto boom. Articulate, infectiously optimistic, with graying hair and a trim beard, the Microsoft software developer-turned-serial entrepreneur has built a series of mines, made (and lost) several bitcoin fortunes and endured countless setbacks to become one of the region’s largest players. Other local miners credit Carlson for launching the basin’s boom, back in 2012, when he showed up in a battered Honda in the middle of a snowstorm and set up his servers in an old furniture store. Carlson wouldn’t go that far, but the 47-year-old was one of the first people to understand, back when bitcoin was still mainly something video gamers mined in their basements, that you might make serious money mining bitcoin at scale—but only if you could find a place with cheap electricity.
As noted in Nakamoto's whitepaper, it is possible to verify bitcoin payments without running a full network node (simplified payment verification, SPV). A user only needs a copy of the block headers of the longest chain, which are available by querying network nodes until it is apparent that the longest chain has been obtained. Then, get the Merkle branch linking the transaction to its block. Linking the transaction to a place in the chain demonstrates that a network node has accepted it, and blocks added after it further establish the confirmation.[2]

As soon as a miner finds a solution and a majority of other miners confirm it, this winning block is accepted by the network as the “official” block for those particular transactions. The official block is then added to previous blocks, creating an ever-lengthening chain of blocks, called the “blockchain,” that serves as a master ledger for all bitcoin transactions. (Most cryptocurrencies have their own blockchain.) And, importantly, the winning miner is rewarded with brand-new bitcoins (when Carlson got started, in mid-2012, the reward was 50 bitcoins) and all the processing fees. The network then moves on to the next batch of payments and the process repeats—and, in theory, will keep repeating, once every 10 minutes or so, until miners mine all 21 million of the bitcoins programmed into the system.
And, inevitably, there was a growing tension with the utilities, which were finally grasping the scale of the miners’ ambitions. In 2014, the public utility district in Chelan County received requests from would-be miners for a total of 220 megawatts—a startling development in a county whose 70,000 residents were then using barely 200 megawatts. Similar patterns were emerging across the river in neighboring Douglas and Grant counties, where power is also cheap.

Behind the scenes, the Bitcoin network is sharing a massive public ledger called the "block chain". This ledger contains every transaction ever processed which enables a user's computer to verify the validity of each transaction. The authenticity of each transaction is protected by digital signatures corresponding to the sending addresses therefore allowing all users to have full control over sending bitcoins.
When you pay someone in bitcoin, you set in motion a process of escalating, energy-intensive complexity. Your payment is basically an electronic message, which contains the complete lineage of your bitcoin, along with data about who you’re sending it to (and, if you choose, a small processing fee). That message gets converted by encryption software into a long string of letters and numbers, which is then broadcast to every miner on the bitcoin network (there are tens of thousands of them, all over the world). Each miner then gathers your encrypted payment message, along with any other payment messages on the network at the time (usually in batches of around 2,000), into what’s called a block. The miner then uses special software to authenticate each payment in the block—verifying, for example, that you owned the bitcoin you’re sending, and that you haven’t already sent that same bitcoin to someone else.
Barely perceptible in the early years after bitcoin was launched in 2009, these adjustments quickly ramped up. By the time Carlson started mining in 2012, difficulty was tripling every year. Carlson’s fat profit margin quickly vanished. He briefly quit, but the possibility of a large-scale mine was simply too tantalizing. Around the world, some people were still mining bitcoin. And while Carlson suspected that many of these stalwarts were probably doing so irrationally—like gamblers doubling down after a loss—others had found a way to making mining pay.
Although there are no guarantees that Bitcoin will continue to rise in value, the future does look bright for this exciting cryptocurrency. Unlike leveraged instruments, you can rest assured that your exposure to Bitcoin is limited to what you pay for it. (This does not apply to Bitcoin or other cryptocurrency derivatives that may be leveraged or shorted).
Third-party internet services called online wallets offer similar functionality but may be easier to use. In this case, credentials to access funds are stored with the online wallet provider rather than on the user's hardware.[93][94] As a result, the user must have complete trust in the wallet provider. A malicious provider or a breach in server security may cause entrusted bitcoins to be stolen. An example of such a security breach occurred with Mt. Gox in 2011.[95] This has led to the often-repeated meme "Not your keys, not your bitcoin".[96]