No. 3: Electrum (software wallet). Electrum is a popular, free storage option in the bitcoin community, and is one of the most, if not the most, well-respected desktop storage apps out there. It's been around since 2011 and is also available for mobile, though Apple (ticker: AAPL) iPhone users are out of luck – to date it's only supported by Android.
Exchanges, however, are a different story. Perhaps the most notable Bitcoin exchange hack was the Tokyo-based MtGox hack in 2014, where 850,000 bitcoins with a value of over $350 million suddenly disappeared from the platform. This doesn’t mean that Bitcoin itself was hacked; it just means that the exchange platform was hacked. Imagine a bank in Iowa is robbed: the USD didn’t get robbed, the bank did.
In addition to being the means of generating new bitcoin, bitcoin mining creates the blockchain that verifies bitcoin transactions. The block reward is gleaned by placing a new block on the blockchain, which acts as an advancing public ledger of verified transaction. This is an essential function for bitcoin's operation as it enables the currency to be safely and predictably created without the centralized regulation in the form of a bank or federal government. Blocks must to be a validated by a proof-of-work (Bitcoin uses Hashcash), which can only be obtained by expending a great deal of processing power. Once a block is obtained a message is broadcast to the mining network and verified by all recipients. 
No. 5: Coinbase (online exchange). Online exchanges are, by and large, less secure than the methods described below. But Coinbase seems to have learned from the lessons of its predecessors, and is one of the biggest bitcoin exchanges in the world. It's also user friendly; not only can you buy, sell, exchange and trade bitcoin on Coinbase, but you can store your bitcoin in a wallet there, too.
Video description:’s mining services continue to grow exponentially as commands roughly 3 percent of the Bitcoin network’s global mining power. In addition to the company’s mining capabilities, is partnered with the largest U.S.-based bitcoin mining data center allowing the company to leverage mining services like no other business in the industry.
These dynamics have resulted in a race among miners to amass the fastest, most energy-efficient chips. And the demand for faster equipment has spawned a new industry devoted entirely to the computational needs of Bitcoin miners. Until late 2013, generic graphics cards and field-programmable gate arrays (FPGAs) were powerful enough to put you in the race. But that same year companies began to sell computer chips, called application-specific integrated circuits (ASICs), which are specifically designed for the task of computing the Bitcoin hashing algorithm. Today, ASICs are the standard technology found in every large-scale facility, including the mining farm in Ordos. When Bitmain first started making ASICs in 2013, the field was thick with competitors—BitFury, a multinational ASIC maker; KnCMiner in Stockholm; Butterfly Labs in the United States; Canaan Creative in Beijing; and about 20 other companies spread around China.
The trick, though, was finding a location where you could put all that cheap power to work. You needed an existing building, because in those days, when bitcoin was trading for just a few dollars, no one could afford to build something new. You needed space for a few hundred high-speed computer servers, and also for the heavy-duty cooling system to keep them from melting down as they churned out the trillions of calculations necessary to mine bitcoin. Above all, you needed a location that could handle a lot of electricity—a quarter of a megawatt, maybe, or even a half a megawatt, enough to light up a couple hundred homes.

Bitcoin mining operations take a lot of effort and power, and the sheer amount of competition makes it difficult for newcomers to enter the race and profit. A new miner would not only need to have adequate computing power and the knowledge to use it to outcompete the competition, but would also need the extensive amount of capital necessary to fund the operations.
The Bitcoin network shares a public ledger called "blockchain". This ledger contains every transaction ever processed, allowing a user's computer to verify the validity of each transaction. The authenticity of each transaction is protected by digital signatures corresponding to sending addresses, allowing all users to have full control over sending Bitcoins from their own Bitcoin addresses. In addition, anyone can process transactions using the computing power of specialized hardware and earn a reward in Bitcoins for this service. This is often called "mining".
There are no physical bitcoins, only balances kept on a public ledger in the cloud, that – along with all Bitcoin transactions – is verified by a massive amount of computing power. Bitcoins are not issued or backed by any banks or governments, nor are individual bitcoins valuable as a commodity. Despite its not being legal tender, Bitcoin charts high on popularity, and has triggered the launch of other virtual currencies collectively referred to as Altcoins.

Unfortunately, “participating” in Bitcoin mining isn’t the same thing as actually making money from it. The new ASIC chips on the market today are specifically designed for mining Bitcoin. They’re really good at Bitcoin mining, and every time someone adds a new ASIC-powered computer to the Bitcoin network, it makes Bitcoin mining that much more difficult.
Just like you don’t walk around with your savings account as cash, there are different Bitcoin wallets that should be used depending on how much money is being stored or transferred. Secure wallets like paper wallets or hardware wallets can be used as “savings” wallets, while mobile, web, and desktop wallets should be treated like your spending wallet.

More broadly, the region is watching uneasily as one of its biggest natural resources—a gigantic surplus of hydroelectric power—is inhaled by a sector that barely existed five years ago and which is routinely derided as the next dot-com bust, or this century’s version of the Dutch tulip craze, or, as New York Times columnist Paul Krugman put it in January, a Ponzi scheme. Indeed, even as Miehe was demonstrating his prospecting chops, bitcoin’s price was already in a swoon that would touch $5,900 and rekindle widespread doubts about the future of virtual currencies.

Computing power is often bundled together or "pooled" to reduce variance in miner income. Individual mining rigs often have to wait for long periods to confirm a block of transactions and receive payment. In a pool, all participating miners get paid every time a participating server solves a block. This payment depends on the amount of work an individual miner contributed to help find that block.[82]

Venture capitalists, such as Peter Thiel's Founders Fund, which invested US$3 million in BitPay, do not purchase bitcoins themselves, but instead fund bitcoin infrastructure that provides payment systems to merchants, exchanges, wallet services, etc.[150] In 2012, an incubator for bitcoin-focused start-ups was founded by Adam Draper, with financing help from his father, venture capitalist Tim Draper, one of the largest bitcoin holders after winning an auction of 30,000 bitcoins,[151] at the time called "mystery buyer".[152] The company's goal is to fund 100 bitcoin businesses within 2–3 years with $10,000 to $20,000 for a 6% stake.[151] Investors also invest in bitcoin mining.[153] According to a 2015 study by Paolo Tasca, bitcoin startups raised almost $1 billion in three years (Q1 2012 – Q1 2015).[154]
For all that potential, however, the basin’s nascent mining community was beset by the sort of troubles that you would have found in any other boomtown. Mining technology was still so new that the early operations were constantly crashing. There was a growing, often bitter competition for mining sites that had adequate power, and whose landlords didn’t flip out when the walls got “Swiss-cheesed” with ventilation holes. There was the constant fear of electrical overloads, as coin-crazed miners pushed power systems to the limit—as, for example, when one miner nearly torched an old laundromat in downtown Wenatchee.
Nobody owns the Bitcoin network much like no one owns the technology behind email or the Internet. Bitcoin transactions are verified by Bitcoin miners which has an entire industry and Bitcoin cloud mining options. While developers are improving the software they cannot force a change in the Bitcoin protocol because all users are free to choose what software and version they use.
As more miners join, the rate of block creation increases. As the rate of block generation increases, the difficulty rises to compensate, which has a balancing of effect due to reducing the rate of block-creation. Any blocks released by malicious miners that do not meet the required difficulty target will simply be rejected by the other participants in the network.
Every 2,016 blocks (approximately 14 days at roughly 10 min per block), the difficulty target is adjusted based on the network's recent performance, with the aim of keeping the average time between new blocks at ten minutes. In this way the system automatically adapts to the total amount of mining power on the network.[3]:ch. 8 Between 1 March 2014 and 1 March 2015, the average number of nonces miners had to try before creating a new block increased from 16.4 quintillion to 200.5 quintillion.[80]