Just because miners want power doesn’t mean they get it. Some inquiries are withdrawn. And all three county public utilities have considerable discretion when it comes to granting power requests. But by law, they must consider any legitimate request for power, which has meant doing costly studies and holding hearings—sparking a prolonged, public debate over this new industry’s impact on the basin’s power economy. There are concerns about the huge costs of new substations, transmission wires and other infrastructure necessary to accommodate these massive loads. In Douglas County, where the bulk of the new mining projects are going in, a brand new 84-megawatt substation that should have been adequate for the next 30 to 50 years of normal population growth was fully subscribed in less than a year.


Despite having similar needs, there is a good deal of diversity in how chip designers build their hashing engines, says Hanke, who also served as the chief technology officer of a now-defunct mining rig manufacturer called CoinTerra. For example, Bitmain uses pipelining—a strategy that links the steps in a process into a chain in which the output of one step is the input of the next. Bitmain competitor BitFury has chosen not to use that technology.
IMPORTANT DISCLAIMER: All content provided herein our website, hyperlinked sites, associated applications, forums, blogs, social media accounts and other platforms (“Site”) is for your general information only, procured from third party sources. We make no warranties of any kind in relation to our content, including but not limited to accuracy and updatedness. No part of the content that we provide constitutes financial advice, legal advice or any other form of advice meant for your specific reliance for any purpose. Any use or reliance on our content is solely at your own risk and discretion. You should conduct your own research, review, analyse and verify our content before relying on them. Trading is a highly risky activity that can lead to major losses, please therefore consult your financial advisor before making any decision. No content on our Site is meant to be a solicitation or offer.
Mining a block is difficult because the SHA-256 hash of a block's header must be lower than or equal to the target in order for the block to be accepted by the network. This problem can be simplified for explanation purposes: The hash of a block must start with a certain number of zeros. The probability of calculating a hash that starts with many zeros is very low, therefore many attempts must be made. In order to generate a new hash each round, a nonce is incremented. See Proof of work for more information.

What bitcoin miners actually do could be better described as competitive bookkeeping. Miners build and maintain a gigantic public ledger containing a record of every bitcoin transaction in history. Every time somebody wants to send bitcoins to somebody else, the transfer has to be validated by miners: They check the ledger to make sure the sender isn’t transferring money she doesn’t have. If the transfer checks out, miners add it to the ledger. Finally, to protect that ledger from getting hacked, miners seal it behind layers and layers of computational work—too much for a would-be fraudster to possibly complete.


Jump up ^ Beikverdi, A.; Song, J. (June 2015). "Trend of centralization in Bitcoin's distributed network". 2015 IEEE/ACIS 16th International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD): 1–6. doi:10.1109/SNPD.2015.7176229. ISBN 978-1-4799-8676-7. Archived from the original on 26 January 2018.

Researchers have pointed out at a "trend towards centralization". Although bitcoin can be sent directly to the bitcoin network, in practice intermediaries are widely used.[30]:220–222 Bitcoin miners join large mining pools to minimize the variance of their income.[30]:215, 219–222[107]:3[108] Because transactions on the network are confirmed by miners, decentralization of the network requires that no single miner or mining pool obtains 51% of the hashing power, which would allow them to double-spend coins, prevent certain transactions from being verified and prevent other miners from earning income.[109] As of 2013 just six mining pools controlled 75% of overall bitcoin hashing power.[109] In 2014 mining pool Ghash.io obtained 51% hashing power which raised significant controversies about the safety of the network. The pool has voluntarily capped their hashing power at 39.99% and requested other pools to act responsibly for the benefit of the whole network.[110]
Lauren Miehe: The Prospector With a knack for turning old buildings into bitcoin mines, Miehe has helped numerous other outsiders set up mining operations in the basin and now manages sites for other miners. He’s been stunned by the interest in the region since bitcoin prices took off last year. “Right now, everyone is in full-greed mode,” he says. Here, Miehe works at his original mine, a half-megawatt operation a few miles from the Columbia River. | Patrick Cavan Brown for Politico Magazine
Correction (Dec. 18, 2013): An earlier version of this article incorrectly stated that the long pink string of numbers and letters in the interactive at the top is the target output hash your computer is trying to find by running the mining script. In fact, it is one of the inputs that your computer feeds into the hash function, not the output it is looking for.
As the world first 28nm BTC and LTC chip maker, Innosilicon selects Genesis Ming as partner in cloud mining industry business for its integrity, excellent customer oriented service and great user interface design. Genesis Mining is the best in class mining service that is supported by our technologically superior mining hardware. This unique synergy produces the best experience for those interested in mining and we look forward to having a long and prosperous relationship.
“These companies are using extraordinary amounts of electricity – typically thousands of times more electricity than an average residential customer would use,” a spokesperson for the New York State Department of Public Service told Wired. “The sheer amount of electricity being used is leading to higher costs for customers in small communities because of a limited supply of low-cost hydropower.”
In a Ponzi scheme using bitcoins, the Bitcoin Savings and Trust promised investors up to 7% weekly interest, and raised at least 700,000 bitcoins from 2011 to 2012.[55] In July 2013, the U.S. Securities and Exchange Commission charged the company and its founder in 2013 "with defrauding investors in a Ponzi scheme involving bitcoin".[55] In September 2014 the judge fined Bitcoin Savings & Trust and its owner $40 million.[56]
Anyone who can run the mining program on the specially designed hardware can participate in mining. Over the years, many computer hardware manufacturers have designed specialized Bitcoin mining hardware that can process transactions and build blocks much more quickly and efficiently than regular computers, since the faster the hardware can guess at random, the higher its chances of solving the puzzle, therefore mining a block.

Mining a block is difficult because the SHA-256 hash of a block's header must be lower than or equal to the target in order for the block to be accepted by the network. This problem can be simplified for explanation purposes: The hash of a block must start with a certain number of zeros. The probability of calculating a hash that starts with many zeros is very low, therefore many attempts must be made. In order to generate a new hash each round, a nonce is incremented. See Proof of work for more information.
On paper, the Mid-Columbia Basin really did look like El Dorado for Carlson and the other miners who began to trickle in during the first years of the boom. The region’s five huge hydroelectric dams, all owned by public utility districts, generate nearly six times as much power as the region’s residents and businesses can use. Most of the surplus is exported, at high prices, to markets like Seattle or Los Angeles, which allows the utilities to sell power locally at well below its cost of production. Power is so cheap here that people heat their homes with electricity, despite bitterly cold winters, and farmers have been able to irrigate the semi-arid region into one of the world’s most productive agricultural areas. (The local newspaper proudly claims to be published in “the Apple Capital of the World and the Buckle on the Power Belt of the Great Northwest.”) And, importantly, it had already attracted several power-hungry industries, notably aluminum smelting and, starting in the mid-2000s, data centers for tech giants like Microsoft and Intuit.
Bitcoin, the first cryptocurrency ever created has indeed become the most widely used digital currency on earth. Ever since the existence of Bitcoin in 2009, it has witnessed unprecedented growth across the world. The reason for its worldwide acceptance is no other than its ability to changed the way transactions are conducted in many electronic platforms. Conventionally, electronic card transactions take approximately three business days to get confirmation. On the other hand, Bitcoin transactions take few minutes to be confirmed on the blockchain.
These days, Miehe says, a serious miner wouldn’t even look at a site like that. As bitcoin’s soaring price has drawn in thousands of new players worldwide, the strange math at the heart of this cryptocurrency has grown steadily more complicated. Generating a single bitcoin takes a lot more servers than it used to—and a lot more power. Today, a half-megawatt mine, Miehe says, “is nothing.” The commercial miners now pouring into the valley are building sites with tens of thousands of servers and electrical loads of as much as 30 megawatts, or enough to power a neighborhood of 13,000 homes. And in the arms race that cryptocurrency mining has become, even these operations will soon be considered small-scale. Miehe knows of substantially larger mining projects in the basin backed by out-of-state investors from Wall Street, Europe and Asia whose prospecting strategy, as he puts it, amounts to “running around with a checkbook just trying to get in there and establish scale.”

I think many institutions are buying quietly before the next rally and before the next halving: http://www.bitcoinblockhalf.com/ This is a great time to accumulate. The upside potential overweighs many times any downside risk. And with the stock market peaking, more money will start flowing into Bitcoin. submitted by /u/simplelifestyle [link] [comments]
In a Ponzi scheme using bitcoins, the Bitcoin Savings and Trust promised investors up to 7% weekly interest, and raised at least 700,000 bitcoins from 2011 to 2012.[55] In July 2013, the U.S. Securities and Exchange Commission charged the company and its founder in 2013 "with defrauding investors in a Ponzi scheme involving bitcoin".[55] In September 2014 the judge fined Bitcoin Savings & Trust and its owner $40 million.[56]
Bitcoin mining is the process through which bitcoins are released to come into circulation. Basically, it involves solving a computationally difficult puzzle to discover a new block, which is added to the blockchain, and receiving a reward in the form of few bitcoins. The block reward was 50 new bitcoins in 2009; it decreases every four years. As more and more bitcoins are created, the difficulty of the mining process – that is, the amount of computing power involved – increases. The mining difficulty began at 1.0 with Bitcoin's debut back in 2009; at the end of the year, it was only 1.18. As of April 2017, the mining difficulty is over 4.24 billion. Once, an ordinary desktop computer sufficed for the mining process; now, to combat the difficulty level, miners must use faster hardware like Application-Specific Integrated Circuits (ASIC), more advanced processing units like Graphic Processing Units (GPUs), etc.
A few miles from the shuttered carwash, David Carlson stands at the edge of a sprawling construction site and watches workers set the roof on a Giga Pod, a self-contained crypto mine that Carlson designed to be assembled in a matter of weeks. When finished, the prefabricated wood-frame structure, roughly 12 by 48 feet, will be equipped with hundreds of high-speed servers that collectively draw a little over a megawatt of power and, in theory, will be capable of producing around 80 bitcoins a month. Carlson himself won’t be the miner; his company, Giga-Watt, will run the pod as a hosting site for other miners. By summer, Giga-Watt expects to have 24 pods here churning out bitcoins and other cryptocurrencies, most of which use the same computing-intensive, cryptographically secured protocol called the blockchain. “We’re right where the rubber hits the road with blockchain,” Carlson shouts as we step inside the project’s first completed pod and stand between the tall rack of toaster-size servers and a bank of roaring cooling fans. The main use of blockchain technology now is to keep a growing electronic ledger of every single bitcoin transaction ever made. But many miners see it as the record-keeping mechanism of the future. “We’re where the blockchain goes from that virtual concept to something that’s real in the world,” says Carlson, “something that somebody had to build and is actually running.”
On 1 August 2017, a hard fork of bitcoin was created, known as Bitcoin Cash.[103] Bitcoin Cash has a larger block size limit and had an identical blockchain at the time of fork. On 24 October 2017 another hard fork, Bitcoin Gold, was created. Bitcoin Gold changes the proof-of-work algorithm used in mining, as the developers felt that mining had become too specialized.[104]
Numerous people have been suggested as possible Satoshi Nakamotos by major media outlets. On Oct. 10, 2011, The New Yorker published an article speculating that Nakamoto might be Irish cryptography student Michael Clear, or economic sociologist Vili Lehdonvirta. A day later, Fast Company suggested that Nakamoto could be a group of three people – Neal King, Vladimir Oksman and Charles Bry – who together appear on a patent related to secure communications that was filed two months before bitcoin.org was registered. A Vice article published in May 2013 added more suspects to the list, including Gavin Andresen, the Bitcoin project’s lead developer; Jed McCaleb, co-founder of now-defunct Bitcoin exchange Mt. Gox; and famed Japanese mathematician Shinichi Mochizuki. 

In the blockchain, bitcoins are registered to bitcoin addresses. Creating a bitcoin address requires nothing more than picking a random valid private key and computing the corresponding bitcoin address. This computation can be done in a split second. But the reverse, computing the private key of a given bitcoin address, is mathematically unfeasible. Users can tell others or make public a bitcoin address without compromising its corresponding private key. Moreover, the number of valid private keys is so vast that it is extremely unlikely someone will compute a key-pair that is already in use and has funds. The vast number of valid private keys makes it unfeasible that brute force could be used to compromise a private key. To be able to spend their bitcoins, the owner must know the corresponding private key and digitally sign the transaction. The network verifies the signature using the public key.[3]:ch. 5
×