Mining is the process of spending computation power to secure Bitcoin transactions against reversal and introducing new Bitcoins to the system. Technically speaking, mining is the calculation of a hash of the block header, which includes among other things a reference to the previous block, a hash of a set of transactions and a nonce (an arbitrary number used just once for authentication purposes).
The other reason is safety. Looking at 2009 alone, 32,489 blocks were mined; at the then-reward rate of 50 BTC per block, the total payout in 2009 was 1,624,500 BTC, which at today’s prices is over $900 million. One may conclude that only Satoshi and perhaps a few other people were mining through 2009, and that they possess a majority of that $900 million worth of BTC. Someone in possession of that much BTC could become a target of criminals, especially since bitcoins are less like stocks and more like cash, where the private keys needed to authorize spending could be printed out and literally kept under a mattress. While it's likely the inventor of Bitcoin would take precautions to make any extortion-induced transfers traceable, remaining anonymous is a good way for Satoshi to limit exposure.
A variant race attack (which has been called a Finney attack by reference to Hal Finney) requires the participation of a miner. Instead of sending both payment requests (to pay Bob and Alice with the same coins) to the network, Eve issues only Alice's payment request to the network, while the accomplice tries to mine a block that includes the payment to Bob instead of Alice. There is a positive probability that the rogue miner will succeed before the network, in which case the payment to Alice will be rejected. As with the plain race attack, Alice can reduce the risk of a Finney attack by waiting for the payment to be included in the blockchain.[16]
All mining ASICs, Bitmain’s included, are performing essentially the same computation—the SHA-256 hashing algorithm—even if they go about it a bit differently. The standard algorithm takes 64 steps to complete, but in Bitcoin it is run twice for each block header, meaning a full round requires 128 steps that are heavy on integer addition. “That’s what dominates the whole design,” says Timo Hanke, the chief cryptographer at String Labs, a cryptography-focused incubator in Palo Alto, Calif. “So, if somebody was to optimize it, they have to optimize the adders. That’s where most of the work is.”

Keeping your Bitcoin wallet safe is essential as Bitcoin wallets represent high-value targets for hackers. Some safeguards include: encrypting the wallet with a strong password, and choosing the cold storage option i.e. storing it offline. It's also advisable to frequently back up your desktop and mobile wallets, as problems with the wallet software on your computer or mobile device could erase your holdings. 
Exchanges, however, are a different story. Perhaps the most notable Bitcoin exchange hack was the Tokyo-based MtGox hack in 2014, where 850,000 bitcoins with a value of over $350 million suddenly disappeared from the platform. This doesn’t mean that Bitcoin itself was hacked; it just means that the exchange platform was hacked. Imagine a bank in Iowa is robbed: the USD didn’t get robbed, the bank did.

Numerous people have been suggested as possible Satoshi Nakamotos by major media outlets. On Oct. 10, 2011, The New Yorker published an article speculating that Nakamoto might be Irish cryptography student Michael Clear, or economic sociologist Vili Lehdonvirta. A day later, Fast Company suggested that Nakamoto could be a group of three people – Neal King, Vladimir Oksman and Charles Bry – who together appear on a patent related to secure communications that was filed two months before was registered. A Vice article published in May 2013 added more suspects to the list, including Gavin Andresen, the Bitcoin project’s lead developer; Jed McCaleb, co-founder of now-defunct Bitcoin exchange Mt. Gox; and famed Japanese mathematician Shinichi Mochizuki. 

Some nodes are mining nodes (usually referred to as "miners"). These group outstanding transactions into blocks and add them to the blockchain. How do they do this? By solving a complex mathematical puzzle that is part of the bitcoin program, and including the answer in the block. The puzzle that needs solving is to find a number that, when combined with the data in the block and passed through a hash function, produces a result that is within a certain range. This is much harder than it sounds.

Paxful Inc. has no relation to MoneyGram, Western Union, Payoneer, Paxum, Paypal, Amazon, OkPay, Payza, Walmart, Reloadit, Perfect Money, WebMoney, Google Wallet, BlueBird, Serve, Square Cash, NetSpend, Chase QuickPay, Skrill, Vanilla, MyVanilla, OneVanilla, Neteller, Venmo, Apple, ChimpChange or any other payment method. We make no claims about being supported by or supporting these services. Their respective wordmarks and trademarks belong to them alone.
When you pay someone in bitcoin, you set in motion a process of escalating, energy-intensive complexity. Your payment is basically an electronic message, which contains the complete lineage of your bitcoin, along with data about who you’re sending it to (and, if you choose, a small processing fee). That message gets converted by encryption software into a long string of letters and numbers, which is then broadcast to every miner on the bitcoin network (there are tens of thousands of them, all over the world). Each miner then gathers your encrypted payment message, along with any other payment messages on the network at the time (usually in batches of around 2,000), into what’s called a block. The miner then uses special software to authenticate each payment in the block—verifying, for example, that you owned the bitcoin you’re sending, and that you haven’t already sent that same bitcoin to someone else.
Computing power is often bundled together or "pooled" to reduce variance in miner income. Individual mining rigs often have to wait for long periods to confirm a block of transactions and receive payment. In a pool, all participating miners get paid every time a participating server solves a block. This payment depends on the amount of work an individual miner contributed to help find that block.[8]
The buttons are used to confirm transactions. In order to send a transaction, you must physically press or hold buttons on the devices. This is a security feature. If a hacker were to access the hardware wallet somehow, the hacker still would not be able to send a TX without physical access to the buttons. Read more about this in TREZOR’s security philosophy.
The bitcoin network is a peer-to-peer payment network that operates on a cryptographic protocol. Users send and receive bitcoins, the units of currency, by broadcasting digitally signed messages to the network using bitcoin cryptocurrency wallet software. Transactions are recorded into a distributed, replicated public database known as the blockchain, with consensus achieved by a proof-of-work system called mining. Satoshi Nakamoto, the designer of bitcoin claimed that design and coding of bitcoin began in 2007. The project was released in 2009 as open source software.
The bitcoin blockchain is a public ledger that records bitcoin transactions.[64] It is implemented as a chain of blocks, each block containing a hash of the previous block up to the genesis block[a] of the chain. A network of communicating nodes running bitcoin software maintains the blockchain.[30]:215–219 Transactions of the form payer X sends Y bitcoins to payee Z are broadcast to this network using readily available software applications.