That’s all transactions are—people signing bitcoins (or fractions of bitcoins) over to each other. The ledger tracks the coins, but it does not track people, at least not explicitly. Assuming Bob creates a new address and key for each transaction, the ledger won’t be able to reveal who he is, or which addresses are his, or how many bitcoins he has in all. It’s just a record of money moving between anonymous hands.
Various journalists,[204][211] economists,[212][213] and the central bank of Estonia[214] have voiced concerns that bitcoin is a Ponzi scheme. In 2013, Eric Posner, a law professor at the University of Chicago, stated that "a real Ponzi scheme takes fraud; bitcoin, by contrast, seems more like a collective delusion."[215] A 2014 report by the World Bank concluded that bitcoin was not a deliberate Ponzi scheme.[216]:7 The Swiss Federal Council[217]:21 examined the concerns that bitcoin might be a pyramid scheme; it concluded that, "Since in the case of bitcoin the typical promises of profits are lacking, it cannot be assumed that bitcoin is a pyramid scheme." In July 2017, billionaire Howard Marks referred to bitcoin as a pyramid scheme.[218]
Desktop wallets are installed on a desktop computer and provide the user with complete control over the wallet. Desktop wallets enable the user to create a Bitcoin address for sending and receiving the Bitcoins. They also allow the user to store a private key. A few known desktop wallets are Bitcoin Core, MultiBit, Armory, Hive OS X, Electrum, etc.
Bitcoin mining is the process through which bitcoins are released to come into circulation. Basically, it involves solving a computationally difficult puzzle to discover a new block, which is added to the blockchain, and receiving a reward in the form of few bitcoins. The block reward was 50 new bitcoins in 2009; it decreases every four years. As more and more bitcoins are created, the difficulty of the mining process – that is, the amount of computing power involved – increases. The mining difficulty began at 1.0 with Bitcoin's debut back in 2009; at the end of the year, it was only 1.18. As of April 2017, the mining difficulty is over 4.24 billion. Once, an ordinary desktop computer sufficed for the mining process; now, to combat the difficulty level, miners must use faster hardware like Application-Specific Integrated Circuits (ASIC), more advanced processing units like Graphic Processing Units (GPUs), etc.

These days, Miehe says, a serious miner wouldn’t even look at a site like that. As bitcoin’s soaring price has drawn in thousands of new players worldwide, the strange math at the heart of this cryptocurrency has grown steadily more complicated. Generating a single bitcoin takes a lot more servers than it used to—and a lot more power. Today, a half-megawatt mine, Miehe says, “is nothing.” The commercial miners now pouring into the valley are building sites with tens of thousands of servers and electrical loads of as much as 30 megawatts, or enough to power a neighborhood of 13,000 homes. And in the arms race that cryptocurrency mining has become, even these operations will soon be considered small-scale. Miehe knows of substantially larger mining projects in the basin backed by out-of-state investors from Wall Street, Europe and Asia whose prospecting strategy, as he puts it, amounts to “running around with a checkbook just trying to get in there and establish scale.”


If fewer people begin to accept Bitcoin as a currency, these digital units may lose value and could become worthless. There is already plenty of competition, and though Bitcoin has a huge lead over the other 100-odd digital currencies that have sprung up, thanks to its brand recognition and venture capital money, a technological break-through in the form of a better virtual coin is always a threat.
But not everyone is going along for the ride. Back in East Wenatchee, Miehe is giving me an impromptu tour of the epicenter of the basin’s boom. We drive out to the industrial park by the regional airport, where the Douglas County Port Authority has created a kind of mining zone. We roll past Carlson’s construction site, which is swarming with equipment and men. Not far away, we can see a cluster of maybe two dozen cargo containers that Salcido has converted into mines, with transformers and cooling systems. Across the highway, near the new, already-tapped out substation, Salcido has another crew working a much larger mine. “A year ago, none of this was here,” Miehe says. “This road wasn’t here.”

In the zero-sum game that cryptocurrency has become, one man’s free money is another man’s headache. In the Mid-Columbia Basin, the latter category includes John Stoll, who oversees Chelan County Public Utility District’s maintenance crews. Stoll regards people like Benny as “rogue operators,” the utility’s term for small players who mine without getting proper permits and equipment upgrades, and whose numbers have soared in the past 12 months. Though only a fraction of the size of their commercial peers, these operators can still overwhelm residential electric grids. In extreme cases, insulation can melt off wires. Transformers will overheat. In one instance last year, the utility says, a miner overloaded a transformer and caused a brush fire.
More important, Nakamoto built the system to make the blocks themselves more difficult to mine as more computer power flows into the network. That is, as more miners join, or as existing miners buy more servers, or as the servers themselves get faster, the bitcoin network automatically adjusts the solution criteria so that finding those passwords requires proportionately more random guesses, and thus more computing power. These adjustments occur every 10 to 14 days, and are programmed to ensure that bitcoin blocks are mined no faster than one roughly every 10 minutes. The presumed rationale is that by forcing miners to commit more computing power, Nakamoto was making miners more invested in the long-term survival of the network.
There will be stepwise refinement of the ASIC products and increases in efficiency, but nothing will offer the 50x to 100x increase in hashing power or 7x reduction in power usage that moves from previous technologies offered. This makes power consumption on an ASIC device the single most important factor of any ASIC product, as the expected useful lifetime of an ASIC mining device is longer than the entire history of bitcoin mining.
Each ASIC has more than 100 cores, all of which operate independently to run Bitcoin’s SHA-256 hashing algorithm. A control board on the top of the machine coordinates the work, downloading the block header to be hashed and distributing the problem to all the hashing engines, which then report back with solutions and the random numbers they used to get them.
The unit of account of the bitcoin system is a bitcoin. Ticker symbols used to represent bitcoin are BTC[b] and XBT.[c] Its Unicode character is ₿.[72]:2 Small amounts of bitcoin used as alternative units are millibitcoin (mBTC), and satoshi (sat). Named in homage to bitcoin's creator, a satoshi is the smallest amount within bitcoin representing 0.00000001 bitcoins, one hundred millionth of a bitcoin.[2] A millibitcoin equals 0.001 bitcoins, one thousandth of a bitcoin or 100,000 satoshis.[73]
×